U(1)' instead of R-parity

Hye-Sung Lee
UC Riverside

Seminar at BNL (8/7/2009)

Under Supersymmetry (SUSY), proton and dark matter candidate decay rapidly.

Observation says they should be extremely long-lived.

Q: What stabilizes them?

- Popular candidate: R-parity
- Alternative: U(1)' gauge symmetry

Outline

Under Supersymmetry (SUSY), proton and dark matter candidate decay rapidly.

1. SUSY needs a companion symmetry.

Observation says they should be extremely long-lived.

Q: What stabilizes them?

- Popular candidate: R-parity?
- Alternative: U(1)' gauge symmetry

3. What kind of U(1)' can replace R-parity?

4. (Briefly) What are implications of U(1)' for LHC?

1. Why SUSY and its companion symmetry?

Supersymmetry to protect Higgs mass

$$\begin{array}{c} t \\ \overline{t} \\ \overline{t} \\ \end{array}$$

$$\delta m_H^2(\text{top + stop}) = \left(-\frac{3}{8\pi^2}\lambda_t^2\Lambda^2 + \cdots\right) + \left(\frac{3}{8\pi^2}\lambda_t^2\Lambda^2 + \cdots\right)$$
$$= -\frac{9}{8\pi^2}\lambda_t^2 m_{\tilde{t}} \log \frac{\Lambda}{m_{\tilde{\tau}}} + \cdots$$

"Higgs (spin 0 particle) mass can be protected by supersymmetry."

Spin 1/2 particle mass is protected by chiral symmetry. Spin 1 particle mass is protected by gauge symmetry.

General SUSY

$$W = \mu H_u H_d$$

$$+ y_E H_d L E^c + y_D H_d Q D^c + y_U H_u Q U^c$$

$$+ \lambda L L E^c + \lambda' L Q D^c + \mu' L H_u + \lambda'' U^c D^c D^c$$

$$+ \frac{\eta_1}{\Lambda} Q Q Q L + \frac{\eta_2}{\Lambda} U^c U^c D^c E^c + \cdots$$

- Lepton number (L) and/or baryon number (B) violating terms at renormalizable and non-renormalizable levels:
 - one of the most general predictions of SUSY.
 - also source of problems.

Proton decay

[Dim 4 L viol. & Dim 4 B viol.]

[Dim 5 L&B viol.]

$$\lambda LLE^c + \lambda' LQD^c$$
 & $\lambda'' U^c D^c D^c$ $\frac{\eta_1}{\Lambda} QQQL + \frac{\eta_2}{\Lambda} U^c U^c D^c E^c$

To satisfy proton lifetime > 10²⁹ years,

$$|\lambda_{LV} \cdot \lambda_{BV}| < 10^{-27}$$

(if one is 0, the other can be large)

$$|\eta| < 10^{-7}$$

(for $\Lambda = M_{Pl}$)

Dark matter candidate decay (lightest neutralino)

$$\Gamma = \lambda_{ijk}^2 \frac{\alpha}{128\pi^2} \frac{m_{\chi^0}^5}{m_{\tilde{f}}^4}$$

To be a viable dark matter, lifetime > Universe age $(14 \times 10^9 \text{ years})$

$$|\lambda_{LV}|, \ |\lambda_{BV}| < 10^{-20}$$

Dark matter candidate

(to form galaxies and their clusters)

- A viable dark matter candidate should
 - De Cold (non-relativistic), Neutral, Stable.
 - explain relic density (WMAP, SDSS): 23% of total energy density.
 - satisfy direct detection experiments limit (CDMS, XENON, etc.).

SM: neutrino (m_v < 0.1eV) is neutral and stable, but relativistic.

SUSY: neutralino (superpartner of neutral Higgs and gauge boson) is neutral and heavy (therefore, cold).

-> Dark matter candidate if stable

SUSY needs a companion mechanism or symmetry. (for stability of proton and dark matter)

2. R-parity

: Most popular SUSY companion symmetry

LSP dark matter

R-parity

SM particles R_p =even R_p =odd

Lightest superpartner (LSP) is stable under R-parity.

Neutralino is a good DM candidate if it is LSP.

Proton stability under R-parity

$$W = \mu H_u H_d$$

$$+ y_E H_d L E^c + y_D H_d Q D^c + y_U H_u Q U^c$$

$$+ \frac{\lambda L L E^c + \lambda' L Q D^c + \mu' L H_u + \lambda'' U^c D^c D^c}{\Lambda} Q Q Q L + \frac{\eta_2}{\Lambda} U^c U^c D^c E^c + \cdots$$

- over-constraining of R-parity: All renormalizable L violating and B violating terms are (unnecessarily) forbidden.
- under-constraining of R-parity: Dim 5 L&B violating terms still mediate too fast proton decay. Weinberg [1982]

Look for an alternative

R-parity may be still valid, but possibilities are limited. (ex) What if B/L violating signals are found?

Find an alternative SUSY companion symmetry, which can

- allow B or L violating terms
- address proton stability (including non-renormalizable operators)
- address dark matter issue (non-LSP dark matter)

3. TeV scale U(1)' gauge symmetry

3. TeV scale U(1)' gauge symmetry

alternative to R-parity for p&DM stability

Remnant discrete symmetry of U(1)'

Z_N emerges from U(1)' naturally (after S gets vev).

$$N = z[S]$$

 $q[F_i] = z[F_i] \mod N$

 $(q[F_i]: Z_N \text{ charge, } z[F_i]: U(1)' \text{ charge of each field } F_i)$ after integer normalization of charges

S: Higgs singlet that breaks U(1)' spontaneously

Our model

HL, Luhn, Matchev [2007~2008]

$$U(1)' -> Z_6 = B_3 \times U_2$$

B₃ (Baryon triality): stabilizes proton
U₂ (U-parity): stabilizes hidden sector DM candidate

B₃ (Baryon triality)

Ibanez, Ross [1992]

	Q	Uc	Dc	L	Ec	Nc	Hu	H _d	meaning
B ₃	0	-1	1	-1	-1	0	1	-1	-B+y/3

- \odot B₃ selection rule: \triangle B=3×integer
 - L is freely violated.
 - B can be violated only by 3×integer.

Stable proton under B3

Proton decay ($\Delta B=1$) is forbidden by B_3 ($\Delta B=3 \times integer$).

Stable proton under B3

Proton decay ($\Delta B=1$) is forbidden by B_3 ($\Delta B=3 \times integer$).

Proton stability better than R-parity

What about dark matter?

Hidden sector fields (SM singlet exotics): interact only with U(1)', often necessary for anomaly cancellations with U(1)'.

([gravity]²-U(1)' and [U(1)']³)

(ex) $W_{hid} = SXX$

They are neutral and massive. Good DM candidate if stable.

LUP dark matter

Hur, HL, Nasri [2007]

U(1)' itself can stabilize the hidden sector fields. Best way to see this: invoke Z_2 as a subgroup of U(1)'

U-parity

MSSM particles	U _p =even
Hidden sector particles	U _p =odd

Lightest U-parity odd particle (LUP), either fermion or scalar, is stable under U-parity.

LUP is a good DM candidate.

Relic density and Direct detection

- \circ X X -> f \overline{f} (mediated by Z')
- \odot X X -> \widetilde{f} \widetilde{f} * (mediated by Z', S)

Ø . . .

[Relic density]

[Direct detection]

Relic density and Direct detection

- \circ X X -> f f (mediated by Z')
- \odot X X -> \widetilde{f} \widetilde{f} * (mediated by Z', S)

Ø . . .

[Relic density]

[Direct detection]

LUP: viable DM candidate

Unified picture of stabilities in the observable and hidden sectors

[U(1)' interacts with both sectors]

A single U(1)' gauge symmetry provides stabilities for proton (MSSM sector) and dark matter (Hidden sector).

Additional advantage of U(1)': μ -problem

$$W = \mu H_u H_d$$

$$+ y_E H_d L E^c + y_D H_d Q D^c + y_U H_u Q U^c$$

$$+ \lambda L L E^c + \lambda' L Q D^c + \mu' L H_u + \lambda'' U^c D^c D^c$$

$$+ \frac{\eta_1}{\Lambda} Q Q Q L + \frac{\eta_2}{\Lambda} U^c U^c D^c E^c + \cdots$$

 $\mu \approx O(EW)$ to avoid fine-tuning in the EWSB. Why is $\mu \approx O(\Lambda)$? (μ -problem) Kim, Nilles [1984]

U(1)' can solve the μ -problem. Natural scale of U(1)' in SUSY is TeV (: sfermion masses). $W = SH_uH_d -> \mu_{eff} = \langle S \rangle \approx O(EW/TeV)$

How to get Z₆=B₃xU₂ out of U(1)'

HL, Luhn, Matchev [2007]; Hur, HL, Luhn [2008]

How to get $U(1)' oup B_3 imes U_2$

In the minimal fields assumption of

$$N_{\text{Higgs pair}} = 1$$
, $N_{\text{fermion family}} = 3$, $N_{SU(2)_L \text{ exotics}} = 0$

- 1. Solve the μ -problem with U(1)' gauge symmetry (SH_uH_d).
- 2. Require $\mathcal L$ violating terms such as λLLE^c .
- 3. Require SXX term (TeV scale mass for hidden sector particle X).

Then $B_3 \times U_2$ is **automatically invoked**, and the proton and LUP are stable.

Recap: R-parity vs. U(1)' in SUSY

	R-parity	$U(1)' -> B_3 \times U_2$		
proton	stable (for renormalizable terms)	stable (B ₃)		
dark matter	stable LSP	stable LUP (U2)		
µ-problem	not addressed	solvable		

TeV scale U(1)' is a viable alternative to R-parity for a SUSY companion symmetry.

Same SUSY, but different SUSY companion symmetries
-> Distinguishable LHC predictions

4. LHC implications of TeV scale U(1)'

TeV scale Z' gauge boson

Motivation order: Higgs -> SUSY -> $\overline{\text{TeV scale U(1)}}'$ TeV scale Z'

Dilepton Z' resonance is very likely first discovery at LHC because of (i) enhanced cross section (ii) clean leptonic signal

(Irreducible BKG for leptonic resonance is small.)

Our approach for LHC

Use various leptonic (e, μ) Z' resonances for new physics search.

new particle (superpartner, Higgs) in the middle

4 lepton Z' resonance

: SUSY search (for sneutrino LSP case)
HL [2008]

superpartner (sneutrino)

(ex) L=13 fb⁻¹ for $M_{Z'}$ =1500 GeV [Details omitted]

L violating coupling (λLLE°) (Scalar neutrino LSP decays to SM particles)

6 lepton Z' resonance

: Higgs search (regardless of SUSY)

[in preparation]

(ex) L=40 fb⁻¹ for $M_{Z'}=700$ GeV [Details omitted]

Z'-Z-H coupling can be sizable if Higgs has U(1)' charge. (longitudinal mode of Z = imaginary part of H)

Works for even leptophobic Z'

Summary

1. Motivation

- 2. TeV scale U(1)' is a good SUSY companion symmetry (to stabilize proton and dark matter) alternative to R_p .
- 3. LHC implications (various leptonic resonances)

2L resonance at $M_{Z'}$: Z' search

4L resonance at Mz': SUSY search (sneutrino LSP)

6L resonance at $M_{Z'}$: Higgs search ($m_H > 2M_Z$)

TeV scale U(1)' is well-motivated, and can help searching for major discovery goals (Higgs, SUSY) at the LHC.